换热器模型是按照基本的传热方程Q =KFAJ11来建立的,其中Q是总的换热负荷,K是总的换热系数,F是以管外径为基准的换热面积,at在这里是对数平均温差。
在系统的负荷发生变化时,制冷循环里的各点都会发生相应的变化以达到系统的再次平衡。为了简化模型,在进行校核计算时,有些点将被假设不变,比如压缩机排气温度等。笔者旨在研究换热器在部分负荷时性能的变化趋势而不是精确的结果,因此这种假设是合理并可以接受的。计算换热器在部分负荷下的性能其实就是对于一个固定换热面积的换热器在负荷变化时进行校核,此时作为输出的结果通常都是换热器的饱和温度。在部分负荷下,制冷剂侧换热系数将随着负荷的变化随之变化,但对于水侧系统设计通常将面临2种选择,即变水流量和定水流量。对于变水流量系统,水侧的进出水温度保持不变,对于定水流量系统,水侧的入口或者出口温度只有一个保持不变。下文的分析都将包括这2种方案,并对其结果作出比较。
2干式蒸发器部分负荷下的性能在风冷机组和中低效的中小型冷水机组中,干式蒸发器是一种很常用的换热器形式。对于这种结构的换热器,制冷剂是在管内流动而水则在壳体内流动。它的优点是制冷剂充注量较少,具有一定的过热度,能自动回油,一般不需要单独的回油系统f实体曲线(横坐标为负荷变化,以下图横坐标同此说明)就是根据笔者所建的模型计算出的干式蒸发器在部分负荷时出口饱和温度的变化(此模型采用某型号直径为15.9mm管,制冷剂为R134a负荷变化时过热度保持不变)水侧是定水流量系统。由图可见,当负荷约为50%的时候,蒸发器出口饱和温度开始低于设计的饱和温度,并且随着负荷的继续减少急剧下降。从这个结果可以很明显地看出在机组负荷低于50%的时候,换热器的性能降低将对系统效率产生负面影响。对于定水流量系统,水侧换热系数随着负荷的变化不会产生很明显的变化,但为什么在系统负荷降到50%左右的时候,蒸发器性能开始下降了呢,通过笔者的分析可能的原因有2个:第一,随着负荷的降低,蒸发器进水温度也随之降低这样就有可能减少换热平均温差;第二,换热管内换热系数随着制冷剂质量流量的减少急剧下降。对于第一种原因只有改变水流量的设置即采用变流量系统,对于第二种原因是不是有什么办法进行改进呢,这将在下面介绍。
中虚线是采用变水量后的蒸发温度变化曲线,与实体曲线一样饱和温度在负荷低于50%的时候也是出现了明显地下降。再比较一下定水流量和变水流量计算出的结果就可以发现,采用变水流量后饱和温度还是得到了一定的改善,但还不足以产生质的变化。通过前面的分析,影响蒸发温度急剧下降还有第二种原因,即管子的因素。笔者采用同一型号的直径为12.7mm管重新进行了上述的计算。是分别采用定水流量和变水流量的计算结果。很显然,计算的结果完全改变了。无论是对于定水流量还是变水流量系统,饱和温度都随着负荷的降低而升高。为什么要采用小管径的蒸发管呢原因有2个a!先小管径的蒸发管在同样的质量流量下换热性能要比大管径的好;其次,小管径的管内换热性能对由于质量流量减少而产生衰减的敏感度比大管径的低。因此采用小管径的干式蒸发器对系统部分负荷时的效率是非常有好处的。再比较不同水流量控制的计算结果,采用变水流量的饱和温度在部分负荷时要明显地比采用定水流量的饱和温度高。可见对于干式换热器,无论是大管径还是小管径,变水流量系统下的部分负荷性能都要优于定水流量。
tg: 光伏发电系统 太阳能发电系统 太阳能控制器 太阳能led路灯 太阳能路灯照明系统 太阳能野外监控系统 太阳能路灯 离网发电系统 太阳能监控系统 太阳能供电设备 光伏控制器 太阳能逆变器 mppt控制器